LES CLES DU DIMENSIONNEMENT
Ouvrages en commandePhotovoltaïque autonome
Photovoltaïque raccordé au réseau
Structures en béton en situation d’incendie > Comportement mécanique à températures élevées
Pour rappel, on effectue les vérifications suivantes.
- Feu ISO : stabilité de la structure pendant 1 h et compartimentage pendant 2 h De fait, les murs coupe-feu étant intégrés à la structure, il faut vérifier une stabilité au feu de 2 heures pour les poteaux du mur coupe-feu.
- Feu localisé : stabilité des éléments de structure (poutre ou poteau) pendant les premières minutes d’incendie.
- Feu de canton : stabilité des éléments de structure (poutre ou poteau) pendant les premières minutes d’incendie.
- Feu de cellule : On doit vérifier l’absence de ruine en chaîne et de ruine vers l’extérieur.
Hypothèses mécaniques
On considère que le pied de poteau est encastré au niveau du dallage. Les poutres sont brochées en tête de poteau, ce qui réalise une liaison de type rotule, sauf en tête des poteaux PO3050 où il n’y a pas de brochage, on considère un appui simple.
Les pannes sont brochées sur les poutres principales au niveau de leur béquet. Elles sont considérées comme bi-articulées, sous réserve de la tenue de la liaison.
Il n’y a pas d’auvent en façade.
Pour les poteaux de façades et les murs coupe-feu, en situation normale, on considère que le poids des panneaux est transmis directement d’un panneau sur l’autre et n’affecte pas directement les poteaux qui ne servent qu’au maintien latéral. Cependant, en situation d’incendie, les déformations hors plan des murs sont importantes, ce qui rend les poteaux sensibles aux effets du second ordre, et risque d’entraver le glissement des attaches dans les rails de support des panneaux. De façon sécuritaire, on considère donc que le poids des panneaux se reporte sur les poteaux en situation d’incendie.
Matériaux
Selon les indications du fabricant des éléments précontraints, les poteaux sont réalisés avec un béton de classe C40/50. Le béton des poutres précontraintes est de classe 50/60 et les armatures de précontraintes ont une limite élastique de fpeg=1 860 MPa, la contrainte initiale étant de 1 425 MPa.
Toutes les armatures de béton armé ont une limite élastique de 500 MPa.
L’évolution des propriétés mécaniques des matériaux avec la température est conforme aux préconisations de l’EN 1992-1-2 et son Annexe Nationale. En particulier, les éléments en béton ont une teneur en eau de 1,5 % qui dispense de la prise en compte du risque d’éclatement du béton (NF EN 1992-1-2 § 4.5.1(2)).
Charges
Selon les indications de la note de calcul à froid, les charges retenues pour le dimensionnement sont :
- le poids propre des éléments, Gp, calculé pour un poids volumique du béton armé valant 24 kN/m3
- une charge de couverture de Gc = 0,25 kN/m²
- une surcharge représentant les charges suspendues au plafond : Gs=0.10 kN/m²
- les charges climatiques (neige) S = 0,68 kN/m²
- panneaux de façade : 3,84 kN/m²
- panneaux des murs coupe-feu : 3,6 k N/m²
- la combinaison de charge la plus défavorable au regard de l’EN 1991-1.2 est : Gp + Gc + Gs + 0,2 S
Les poutres principales (IE105) reprennent une charge correspondant à 12 m de largeur de toiture.
Élément | Analyse élément par élément | Modèle 2D |
---|---|---|
Panne | PP5230 : 4,42 kN/ml PT5530 : 6,19 kN/ml |
PP5230 : 4,42 kN/ml |
Poutre IE105 | 15,50 kN/ml | 15,50 kN/ml |
Poteaux | Charges ponctuelles Au centre : 372 kN En rive : 186 kN Charges réparties PO5050 : 5,90 kN/ml PO6060 : 8,54 kN/ml En façade : Parallèle aux poutres IE : 46 kN/ml Parallèle aux pannes : 23 kN/ml Murs coupe-feu : 43,2 kN/ml |
Charges ponctuelles (sens pannes) Au centre : 319 kN En rive : 160 kN Charges réparties : PO5050 : 5,90 kN/ml (5,45 si feuillure ou en gravure) PO6060 : 8,54 kN/ml En façade : Parallèle aux poutres IE : 46 kN/ml Parallèle aux pannes : 23 kN/ml Murs coupe-feu : 43,2kN/ml |
Charges globales pour les calculs mécaniques |
Résultats mécaniques
Cette partie a pour but de présenter la forme des résultats obtenus, et les interprétations associées. On utilise des exemples issus de l’entrepôt étudié.
=> CALCUL ELEMENT PAR ELEMENT
Stabilité d’une poutre
La stabilité d’une poutre peut être étudiée soit en faisant un calcul de résistance à la flexion et à l’effort tranchant, (calculs de type CIMFEU), soit en simulant la poutre à l’aide d’un logiciel éléments finis et en contrôlant les déplacements. Pour les poutres étudiées, qui sont isostatiques, une chute brutale de la flèche à mi-travée indique l’effondrement. Il faut également vérifier en sus la résistance à l’effort tranchant, cette vérification n’étant pas effectuée par le logiciel utilisé (SAFIR).
Poutre IE 105
: portée 24 m, charge répartie 15,5 kN/ml, isostatique, Feu ISOLa courbe de cette figure montre que la flèche à mi-travée de la poutre présente une brusque augmentation à partir de 100 minutes, et une chute à 113 minutes. Le déplacement d’extrémité est négatif à l’origine (raccourcissement dû à la précontrainte) et augmente sous l’effet de la dilatation thermique. À partir de 113 minutes, il y a une chute brutale de ce déplacement car la poutre s’effondre vers l’intérieur (ruine en flexion).
Figure 35 : Evolution de la flèche à mi-travée et du déplacement d’extrémité pour la poutre IE105, sous feu ISO (dans le cas de 3 côtés exposés ou 4 côtés exposés)
La courbe donne l’évolution du comportement en flexion de la poutre. Pour conclure sur la stabilité au feu, il est nécessaire de vérifier la résistance à l’effort tranchant. On effectue le calcul à 120 minutes.
Les armatures d’effort tranchant sont constituées de 2 brins HA10 espacés de 5 cm, avec un enrobage de 2 cm. Compte tenu de la forme de la poutre (section en I), on vérifie la résistance du béton dans l’âme et la résistance des armatures d’effort tranchant dans cette même zone, à 2 cm des parements.
La température de référence pour les armatures est θp = 807 °C.
La section réduite de l’âme a une largeur de 2,8 cm. Elle est calculée à partir du champ de températures à t = 120 minutes. Pour chaque maille de largeur bi, la température au centre de la maille est notée qi, et sa largeur réduite est b = bi kc (qi) avec k le coefficient de réduction du béton selon l’Eurocode 2 partie 1-2. La largeur réduite de l’âme est obtenue en sommant les largeurs réduites de chaque maille.
En optant pour une valeur d’inclinaison des bielles telles que cot(θ) = 2,5, on trouve en appliquant les formules de résistance à l’effort tranchant issues de l’Eurocode 2 : VRd,s = 192 kN, VRd,min = 261 kN, ou VEd = 186 kN, donc la résistance à l’effort tranchant est satisfaite à 120 minutes.
La poutre IE105 est stable au feu ISO pendant 113 minutes.
Panne structurale PP5230
: ortée 12 m, charge répartie 4,42 kN/ml, isostatique, feu ISOFigure 36 : Flèches des poutres PP5230, feu ISO, exposées sur 3 ou 4 côtés
Les calculs de résistance au cisaillement ne conduisent pas à réduire la durée de stabilité au feu de la poutre.
La panne PP5230 est stable au feu ISO pendant 50 minutes.
Figure 37 : Modèle et déformée à 15 minutes de la poutre IE 105 (en haut) et de la panne (PP5230), pour l’action thermique T1
Les flèches à mi-travée atteignent respectivement +13 mm et -5 mm. Dans le cas de la poutre IE105, le chargement en situation d’incendie ne compense pas la contre-flèche due à la précontrainte, ce qui explique la valeur positive de la flèche.
Le déplacement de l’extrémité libre de la poutre est de 3,8 mm, celui de la panne est de 10 mm. Pour la poutre IE105, dont la raideur longitudinale est très forte comparée à la raideur des poteaux en flexion, cette valeur ne remet pas en cause le modèle isostatique. Pour la panne, la raideur longitudinale est plus faible comparée à la raideur du reste de la structure. Les déplacements des extrémités sont donc gênés. Compte tenu que l’appui de la panne est réalisé par son béquet, les déplacements gênés induisent un effort normal excentré dans la panne, ce qui a pour effet d’augmenter la flèche à mi-travée. Néanmoins, on considère que cet effet ne remet pas en cause la stabilité de la panne dans la situation considérée.
L’effort tranchant est très faible dans les zones exposées au feu. Le critère de résistance à l’effort tranchant est satisfait.
Pour le scénario de feu localisé, la poutre IE105 est stable pendant toute la durée de l’action thermique T1.
Pour le scénario de feu localisé, la panne PP5230 est stable pendant toute la durée de l’action thermique T1.
La stabilité d’un poteau peut être étudiée soit en faisant un calcul de résistance en compression et au flambement, (calculs de type CIMFEU), soit en simulant le poteau à l’aide d’un logiciel éléments finis et en contrôlant les déplacements. Pour les poteaux du mur coupe feu et les poteaux de façade, la courbure provoquée par le gradient thermique est très sévère. Il est nécessaire d’en tenir compte dans la vérification de la stabilité au flambement.
Poteau PO5050 avec feuillure (mur CF) : hauteur 12,33 m, charge répartie 49,1 kN/ml, charge en tête 320 kN, encastré en pied, appui simple en tête. Poteau PO5050 (façade, engravure jusqu’à 5,55 m) : hauteur 12,33 m, charge répartie 28,9 kN/ml, charge en tête 186 kN, encastré en pied, appui simple en tête.
Figure 38 : Déplacement horizontal, poteau PO5050-f du mur coupe-feu et poteau PO5050E de façade, feu ISO.
Le déplacement horizontal du poteau à mi-hauteur traduit la courbure du poteau sous l’action du fort gradient thermique dans la section. On n’observe aucune variation brutale de la déformée, ce qui indique qu’on n’atteint pas la ruine par flambement. Cette conclusion est valable si les poteaux restent maintenus en tête. C’est le cas pour le poteau du mur coupe-feu, dont les poutres de la cellule non exposée au feu assurent le maintien. En revanche, les poutres et les pannes qui tiennent les poteaux de façade en tête ont une durée de stabilité plus faible (respectivement 113 et 50 minutes). À partir de la ruine des poutres, le schéma statique change. Si on simule un poteau simplement encastré en pied et non tenu en tête (console), la durée de stabilité au feu est de 87 minutes. En conséquence, la durée de stabilité des poteaux extérieurs est conditionnée par celle des poutres.
De la même façon les poteaux centraux PO5050 ont une durée de stabilité limitée à celle des poutres (113 minutes).
Le poteau du mur coupe-feu est stable au feu ISO pendant 4 h.
La durée de stabilité des poteaux centraux est conditionnée par celle des poutres qui les maintiennent en tête soit 113 minutes.
La durée de stabilité des poteaux de façades est conditionnée par celle des poutres qui les maintiennent en tête :
- 50 minutes dans le sens des pannes
- 113 minutes dans le sens des poutres
Le poteau du mur coupe-feu est stable pendant toute la durée de l’action thermique T1 (feu localisé).
=> CALCUL EN PORTIQUE 2D
La vérification de critères de sécurité associés aux calculs de la réponse de la structure sous l’action du feu naturel nécessite l’étude du comportement de la structure générale, en particulier pour analyser la cinématique de ruine (ruine en chaîne, ruine vers l’extérieur). En particulier, il est nécessaire de vérifier la capacité des liaisons à résister aux efforts spécifiques induits par l’incendie. Ces efforts sont dus aux dilatations gênées et aux déformations relatives des éléments assemblés. Aujourd’hui, il n’existe pas de méthode codifiée pour vérifier ce point. Une étude au cas par cas est nécessaire. Dans le cadre du présent guide, on suppose que les liaisons sont suffisamment résistantes pour garantir la validité des schémas structurels pendant toute la durée des sollicitations thermiques étudiées. Cette hypothèse revient à supposer que la ruine des liaisons n’est pas le facteur déterminant de la stabilité des portiques étudiés.
Cette hypothèse doit être justifiée pour chaque étude particulière. Elle ne peut être faite dans le cas général.
Risque de ruine en chaîne
Il est nécessaire de tenir compte du comportement de la structure de la cellule exposée au feu et de celle des autres cellules. On choisit ici de représenter les cellules non exposées au feu par la raideur globale en flexion de leurs poteaux non chauffés, ce qui a pour avantage de simplifier le modèle mécanique. En effet, la structure des cellules est connectée par les poutres qui ont à froid une raideur très grande par rapport à la raideur en flexion de poteaux. Les cellules adjacentes sont donc représentées par un ressort horizontal élastique, dont la raideur est calculée à partir des raideurs des poteaux restés froids. Ce ressort limite les déplacements en tête des poteaux mitoyens à deux cellules. Il faut vérifier ensuite que les structures non exposées restent bien dans leur comportement élastique pendant la durée de l’incendie, c’est-à-dire que les déplacements imposés par la cellule en feu ne provoquent pas la fissuration des sections non exposées au feu.
La raideur équivalente R du ressort représentant n poteaux non exposés au feu est donnée par la formule :
Où :
- I est le moment d’inertie du poteau ; soit 0,0052 m4 pour les poteaux PO5050,
- h sa hauteur, soit 13,38 m,
- E le module d’Young instantané du béton armé, ici 35GPa.
Risque de ruine vers l’extérieur
On utilise le même modèle que précédemment. Le poteau de façade est tenu en tête par le reste de la structure selon la file considérée. On contrôle alors la valeur des déplacements horizontaux de la tête du poteau de rive.
Simulations sous feu ISO
On s’intéresse dans un premier temps au portique dans le sens des poutres IE105.
Portique dans le sens des poutres IE : hauteur des poteaux 12,33 m et 11,60 m.
Charges réparties :
- Poutres : 15,5 kN/m
- Poteaux de façade : 28,45 kN/m
- Poteaux courants : 5,9 kN/ml,
Charge en tête 320 kN,
- Poteaux encastré en pied.
Figure 39 : Modélisation du portique dans le sens des poutres IE 105, feu ISO
Figure 40 : Allure de la déformée juste avant l’effondrement du portique
Il apparaît clairement sur le graphique ci-dessus que la condition de symétrie permet d’éviter des instabilités numériques. Les durées de stabilité obtenue et les modes de ruines sont compatibles avec le résultat des calculs éléments par éléments : L’effondrement du portique est dû à la ruine de la poutre en flexion. Le fait de prendre en compte l’ensemble de la structure permet de redistribuer des efforts et aboutit à un (faible) gain de résistance, ce qui permet ici de justifier une durée de stabilité de 2 heures, alors que l’étude de la poutre seule aboutissait à une durée de 113 minutes.
La structure est stable au feu ISO pendant 2 h.
Portique dans le sens des pannes PP
: hauteur des poteaux 13,60 m.Charges réparties :
- Pannes : 4.42 kN/ml
- Poteaux de façade : 28,45 kN/ml
- Poteaux courants : 5,9 kN/ml,
- Poteaux du mur coupe-feu : 48,65 kN/ml
- Poteau de façade 160 kN,
- Poteaux intermédiaire et mur coupe-feu : 319 kN,
- Poteaux encastré en pied, ressort de 2,735 MN/m en tête du mur coupe-feu.
Figure 41 : Allure de la déformée du portique juste avant l’effondrement
Figure 42 : Déformation des pannes
On note qu’en tête de poteau, la déformation est d’abord vers l’extérieur (dx<0) puis les grands déplacements de la panne et sa ruine imposent un déplacement de la façade vers l’intérieur. La stabilité du portique dépasse significativement celle de la panne si elle est considérée seule (50 minutes). Une explication peut être trouvée en examinant les efforts dans la panne. La figure ci-dessous montre l’évolution des efforts dans la panne la plus déformée (côté mur coupe-feu).
Figure 43 : Evolution de l’effort normal et du moment de flexion dans les pannes
Les pannes sont soumises à de la traction car la déformation du poteau de façade vers l’extérieur sous l’effet du gradient thermique est retenue par les pannes. Lorsque la résistance de la panne en flexion composée est dépassée, l’équilibre est assuré par un fonctionnement en chaînette qui se traduit notamment par une brusque chute du moment sollicitant (vers 40 minutes). La modélisation de la structure complète permet là encore un petit gain de stabilité.
La structure dans le sens des pannes est stable au feu ISO 1 heure.
Simulation d’un incendie de canton
La figure 44 montre le modèle 2D de la structure d’une cellule de rive, dans le sens des poutres. On considère que qu’un canton situé en façade est exposé au feu. La structure des autres cellules est représentée par le ressort horizontal à droite de la figure. On examine le cas d’un feu de cellule. Dans les premières minutes de l’incendie, on considère le scénario (feu de canton), en tenant compte du fait que le feu démarre près du poteau central, qui est donc soumis à l’action localisée du scénario 1. La hauteur de couche chaude est de 7,5 m.
Figure 44 : Modèle 2D pour l’incendie de canton (dans le sens des poutres)
La Figure 45 montre le modèle 2D de la structure d’une cellule de rive, dans le sens des pannes. La structure des autres cellules est représentée par le ressort horizontal à droite de la figure. On examine le cas d’un feu de cellule. Dans les premières minutes de l’incendie, on considère le scénario (feu de canton), en tenant compte du fait que le feu démarre près du poteau central, qui est donc soumis à l’action localisée du scénario 1. La hauteur de couche chaude est de 7,5 m.
Figure 45 : Modèle 2D pour l’incendie de canton (dans le sens des pannes)
Le feu de canton ne remet pas en cause la stabilité de la structure. Les déformées produites restent assez petites. En effet, compte tenu de la courte durée de l’action thermique (35 mn), l’échauffement des sections est encore assez restreint.
Les figures ci-dessous montrent l’allure de la déformée des deux portiques étudiés, avec un facteur d’échelle de 20. Pour le portique dans le sens des pannes, les déplacements maximaux sont de 78 mm horizontalement en tête du poteau de façade (l’amplitude totale du déplacement est de 85 mm sur la durée de cette action thermique) et de 37 mm verticalement à mi-travée des pannes. Pour le portique dans le sens des poutres, les déplacements maximaux sont de 44 mm horizontalement en tête du poteau de façade (l’amplitude totale du déplacement est de 60 mm sur la durée de cette action thermique) et de 20 mm verticalement à mi-travée des pannes.
Figure 46 : Allure de la déformée des portiques avant la ruine (haut : dans le sens des pannes ; bas : dans le sens des poutres)
La structure dans le sens des pannes est stable pendant toute la durée du scénario de feu de canton.
Simulation d’un incendie de cellule
Tous les éléments de structures sont exposés à une température uniforme de 900 °C. On calcule la durée de stabilité de la structure sous cette action. Le calcul est donc poursuivi jusqu’à la ruine.
Les poutres IE105 et les pannes PP5230 sont exposées sur toute leur périphérie (4 faces exposées) car pour ce scénario, on considère que la couverture a disparu. En revanche, les poteaux de façade sont toujours exposés sur 3 faces car le bardage béton est supposé rester en place jusqu’à la ruine de la structure.
Résultats
Dans le sens des pannes la durée de stabilité du portique sous un feu de cellule est de 50 minutes.