GuidEnR HQE > Mécanismes de corrosion des armatures acier dans le béton  
GUIDEnR Haute Qualité Environnementale,
L'information HQE
 
 

 Actualités :  


LES CLES DU DIMENSIONNEMENT

Ouvrages en commande
Photovoltaïque autonome

Photovoltaïque raccordé au réseau





Mécanismes de corrosion des armatures acier dans le béton


Dans des conditions normales, les armatures enrobées d’un béton compact et non fissuré sont protégées naturellement des risques de corrosion par un phénomène de passivation qui résulte de la création, à la surface de l’acier, d’une pellicule protectrice Fe2O3CaO (dite de passivation).



Cette pellicule est formée par l’action de la chaux libérée par les silicates de calcium sur l’oxyde de fer. La présence de chaux maintient la basicité du milieu entourant les armatures (l’hydratation du ciment produit une solution interstitielle basique de pH élevé de l’ordre de 12 à 13). Les armatures sont protégées tant qu’elles se trouvent dans un milieu présentant un pH compris entre 9 et 13,5.

Deux principaux phénomènes peuvent dans certaines conditions détruire cette protection et initier la corrosion des armatures en acier :
  • la carbonatation du béton d’enrobage par l’adsorption du gaz carbonique contenu dans l’atmosphère ;
  • la pénétration des ions chlorures, jusqu’au niveau des armatures.
La plus ou moins grande rapidité d’action de ces divers agents est fonction de l’humidité ambiante, de la porosité du béton et de la présence de fissures qui favorisent la diffusion des gaz ou des liquides agressifs.

Carbonatation


La carbonatation du béton par le gaz carbonique de l’air (CO2) est un phénomène naturel qui n’est pas nocif pour le béton. Au cours de la prise et du durcissement, les ciments se combinent avec l’eau pour former des produits hydratés de caractère basique. Certains de ces produits [KOH, NaOH et Ca(OH)2] restent dissous dans la solution aqueuse interstitielle du béton (dont le pH est compris entre 12 et 13). Le gaz carbonique contenu dans l’air a tendance à se combiner avec les produits hydratés, en commençant par les bases alcalines dissoutes dans la solution aqueuse interstitielle, en particulier le Ca(OH)2, selon une réaction produisant de carbonate de calcium CaCO3 :

Ca (OH)2 + CO2 + H2O → CaCO3 + 2H2O


Carbonatation du béton Le milieu basique (pH 12 à 13) se trouve progressivement modifié par la neutralisation de l’alcalinité du ciment pour atteindre un pH de l’ordre de 9, n’assurant plus la protection des armatures et entraînant une dépassivation de l’acier (destruction de la couche de passivation), ce qui développe la réaction d’oxydation à la surface des armatures.

La progression de la carbonatation se fait de l’extérieur de l’ouvrage, en contact avec l’air ambiant, vers l’intérieur. Dans un premier temps, la vitesse de propagation est ralentie par la formation des carbonates qui colmatent partiellement la porosité. Elle diminue donc avec la profondeur atteinte. Dans un second temps, la carbonatation a pour conséquence une neutralisation (chute du pH de la solution interstitielle) du milieu de protection des armatures, qui peuvent alors s’oxyder. La cinétique du processus dépend de la teneur en dioxyde de carbone et de la facilité avec laquelle le gaz carbonique pénètre dans les pores du béton.

Cette progression est fonction de paramètres liés aux caractéristiques du béton (nature et dosage du ciment, dosage en eau, porosité et perméabilité) et au milieu environnant. Plus le béton est compact, le dosage en ciment élevé, le rapport eau/ciment faible et la résistance du béton élevée, plus la progression du front de carbonatation est lente. Tout ce qui conduit à diminuer la porosité du béton retarde l’échéance de dépassivation des armatures.

L’humidité relative de l’air joue, en particulier, un rôle important : la vitesse de carbonatation est maximale pour une humidité relative de l’ordre de 60 %, pratiquement nulle en atmosphère sèche ou pour des bétons complètement saturés en eau. La profondeur de carbonatation d’un béton est donc fonction de sa composition, de sa structure poreuse et de la classe d’exposition dans laquelle est situé l’ouvrage.

Action des chlorures


L’action des chlorures est spécifique à certains environnements dans lesquels peut se trouver le béton comme les ouvrages soumis aux sels de déverglaçage ou situés en site maritime (zone de marnage, surfaces soumises aux embruns). Les ions chlorures peuvent pénétrer par diffusion ou migrer par capillarité à l’intérieur du béton, franchir la zone d’enrobage, atteindre les armatures, « dépassiver » l’armature acier et provoquer des corrosions (par mécanisme de dissolution du métal suivant une réaction d’oxydoréduction : métal → ions métalliques Mn+ + n électrons), d’abord ponctuelles (corrosion par piqûres) puis généralisées à toute la surface de l’acier (corrosion généralisée par piqûres). La vitesse de pénétration des chlorures dépend en particulier de la porosité du béton. Elle décroît lorsque le rapport eau/ciment diminue.

La corrosion des armatures s’amorce dès que la teneur en chlorures au niveau des armatures atteint un certain seuil de dépassivation. Ce seuil est fonction du pH de la solution interstitielle et de la teneur en oxygène au niveau des armatures ; il est de l’ordre de 0,4 à 0,5 % par rapport au poids du ciment. Il est atteint plus rapidement si le béton est carbonaté.

Effets de la corrosion


Le développement de la corrosion des armatures peut provoquer par gonflement une poussée au vide sur le béton d’enrobage (les oxydes de fer étant plus volumineux que l’acier, ils génèrent des contraintes internes dans le béton qui peuvent être supérieures à sa résistance en traction) et donc une altération de l’aspect extérieur de l’ouvrage (éclatement localisé, formation de fissures, formation d’épaufrures, apparition en surface de traces de rouille et éventuellement mise à nu de l’armature) et une réduction de la section efficace de l’armature et de son adhérence au béton.

En règle générale, dans des milieux peu agressifs les enrobages et les caractéristiques des bétons (compacité, homogénéité, résistance) préconisés sont suffisants pour garantir la protection naturelle des aciers durant la durée de vie escomptée de l’ouvrage. Toutefois, des défauts d’enrobage, des bétons mal vibrés et de ce fait trop poreux, ou des milieux très agressifs risquent de conduire à la dégradation prématurée de l’armature acier.